A Construction of Generalized Harish-chandra Modules for Locally Reductive Lie Algebras
نویسندگان
چکیده
We study cohomological induction for a pair (g, k), g being an infinite dimensional locally reductive Lie algebra and k ⊂ g being of the form k0 + Cg(k0), where k0 ⊂ g is a finite dimensional reductive in g subalgebra and Cg(k0) is the centralizer of k0 in g. We prove a general non-vanishing and k-finiteness theorem for the output. This yields in particular simple (g, k)-modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when g is a root-reductive or diagonal locally simple Lie algebra. (2000 MSC): Primary 17B10, Secondary 17B55
منابع مشابه
GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE
We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...
متن کاملGeneralized Harish-Chandra Modules: A New Direction in the Structure Theory of Representations
Let g be a reductive Lie algebra over C. We say that a g-module M is a generalized Harish-Chandra module if, for some subalgebra k ⊂ g, M is locally k-finite and has finite k-multiplicities. We believe that the problem of classifying all irreducible generalized Harish-Chandra modules could be tractable. In this paper, we review the recent success with the case when k is a Cartan subalgebra. We ...
متن کاملTo the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE
We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...
متن کاملA CONSTRUCTION OF GENERALIZED HARISH-CHANDRA MODULES WITH ARBITRARY MINIMAL k-TYPE
Let g be a semisimple complex Lie algebra and k ⊂ g be any algebraic subalgebra reductive in g. For any simple finite dimensional k-module V , we construct simple (g, k)-modules M with finite dimensional k-isotypic components such that V is a k-submodule of M and the Vogan norm of any simple k-submodule V ′ ⊂ M, V ′ 6≃ V , is greater than the Vogan norm of V . The (g, k)-modules M are subquotie...
متن کاملGalois algebras I: Structure Theory
We introduce a concept and develop a theory of Galois subalgebras in skew semigroup rings. Proposed approach has a strong impact on the representation theory, first of all the theory of Harish-Chandra modules, of many infinite dimensional algebras including the Generalized Weyl algebras, the universal enveloping algebras of reductive Lie algebras, their quantizations, Yangians etc. In particula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008